Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine

1993-03-01
930869
A new technique which is based on optoacoustic phenomena has been developed for measuring in-cylinder gas temperature and turbulent diffusivity. In the experiments, a high energy Nd:YAG pulsed laser beam was focused to cause local ionization of air at a point in the combustion chamber. This initiates a shock wave and creates a hot spot. The local temperature and turbulent diffusivity are determined by monitoring the shock propagation and the hot spot growth, respectively, with a schlieren photography system. In order to assess the validity and accuracy of the measurements, the technique was also applied to a turbulent jet. The temperature measurements were found to be accurate to within 3%. Results from the turbulent jet measurements also showed that the growth rate of the hot spot diameter can be used to estimate the turbulent diffusivity. In-cylinder gas temperature measurements were made in a motored single cylinder Caterpillar diesel engine, modified for optical access.
Technical Paper

Assessment of In-Cylinder Thermal Barrier Coatings over a Full Vehicle Drive Cycle

2021-04-06
2021-01-0456
In-cylinder thermal barrier coatings (TBCs) have the capability to reduce fuel consumption by reducing wall heat transfer and to increase exhaust enthalpy. Low thermal conductivity, low volumetric heat capacity thermal barrier coatings tend to reduce the gas-wall temperature difference, the driving potential for heat transfer from the gas to the combustion chamber surfaces. This paper presents a coupling between an analytical methodology for multi-layer coated wall surface temperature prediction with a fully calibrated production model in a commercial system-level simulation software package (GT-Power). The wall surface temperature at each time step was calculated efficiently by convolving the engine wall response function with the time-varying surface boundary condition, i. e., in-cylinder heat flux and coolant temperature. This tool allows the wall to be treated either as spatially uniform with one set of properties, or with independent head/piston/liner components.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

2018-09-10
2018-01-1794
Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Technical Paper

Characteristics of Vaporizing Continuous Multi-Component Fuel Sprays in a Port Fuel Injection Gasoline Engine

2001-03-05
2001-01-1231
Vaporization models for continuous multi-component liquid sprays and liquid wall films are presented using a continuous thermodynamics formulation. The models were implemented in the KIVA3V-Release 2.0 code. The models are first applied to clarify the characteristics of vaporizing continuous multi-component liquid wall films and liquid drops, and then applied to numerically analyze a practical continuous multi-component fuel - gasoline behavior in a 4-valve port fuel injection (PFI) gasoline engine under warm conditions. Corresponding computations with single-component fuels are also performed and presented for comparison purposes. As compared to the results of its single-component counterpart, the vaporizing continuous multi-component fuel drop displays a larger vaporization rate initially and a smaller vaporization rate as it becomes more and more dominated by heavy species.
Technical Paper

Combined Impacts of Engine Speed and Fuel Reactivity on Energy-Assisted Compression-Ignition Operation with Sustainable Aviation Fuels

2023-04-11
2023-01-0263
The combined impacts of engine speed and fuel reactivity on energy-assisted compression-ignition (EACI) combustion using a commercial off-the-shelf (COTS) ceramic glow plug for low-load operation werexxz investigated. The COTS glow plug, used as the ignition assistant (IA), was overdriven beyond its conventional operation range. Engine speed was varied from 1200 RPM to 2100 RPM. Three fuel blends consisting of a jet-A fuel with military additives (F24) and a low cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) were tested with cetane numbers (CN) of 25.9, 35.5, and 48.5. The ranges of engine speed and fuel cetane numbers studied are significantly larger than those in previous studies of EACI or glow-plug assisted combustion, and the simultaneous variation of engine speed and fuel reactivity are unique to this work. For each speed and fuel, a single-injection of fixed mass was used and the start of injection (SOI) was swept for each IA power.
Technical Paper

Combustion and Lift-Off Characteristics of n-Heptane Sprays Using Direct Numerical Simulations

2007-10-29
2007-01-4136
Fundamental simulations using DNS type procedures were used to investigate the ignition, combustion characteristics and the lift-off trends of a spatially evolving turbulent liquid fuel jet. In particular, the spatially evolving n-Heptane spray injected in a two-dimensional rectangular domain with an engine like environment was investigated. The computational results were compared to the experimental observations from an optical engine as reported in the literature. It was found that an initial fuel rich combustion downstream of the spray tip is followed by diffusion combustion. Investigations were also made to understand the effects of injection velocity, ambient temperature and the droplet radius on the lift-off length. For each of these parameters three different values in a given range were chosen. For both injection velocity and droplet radius, an increase resulted in a near linear increase in the lift-off length.
Journal Article

Comparative Study on Various Methods for Measuring Engine Particulate Matter Emissions

2008-06-23
2008-01-1748
Studies have shown that there are a significant number of chemical species present in engine exhaust particulate matter emissions. Additionally, the majority of current world-wide regulatory methods for measuring engine particulate emissions are gravimetrically based. As modern engines considerably reduce particulate mass emissions, these methods become less stable and begin to display higher levels of measurement uncertainty. In this study, a characterization of mass emissions from three heavy-duty diesel engines, with a range of particulate emission levels, was made in order to gain a better understanding of the variability and uncertainty associated with common mass measurement methods, as well as how well these methods compare with each other. Two gravimetric mass measurement methods and a reconstructed mass method were analyzed as part of the present study.
Technical Paper

Comparison Between Air-Assisted and Single-Fluid Pressure Atomizers for Direct-Injection SI Engines Via Spatial and Temporal Mass Flux Measurements

1997-02-24
970630
Two distinct atomization strategies are contrasted through the measurement of time and spatially dependent mass flux. The two systems investigated include a pressure atomizer (6.9 MPa opening pressure) and an air-assist atomizer. Both systems have potential for use in direct injection spark ignition engines. The mass flux data presented were obtained using a spray patternator that was developed to allow phased sampling of the spray. The temporal mass related history of the spray was reconstructed as volume versus time plots and interpolated mass flux contour plots. Results indicate substantial differences in the distribution of both mass and mass flux in space and time for the two injection systems. For example, the pressure atomizer at high mass delivery rates produced a spray that collapsed into a dispersed cylindrical shape while at low rates, generated a hollow cone structure.
Technical Paper

Comparison of Linear, Non-Linear and Generalized RNG-Based k-epsilon Models for Turbulent Diesel Engine Flows

2017-03-28
2017-01-0561
In this work, linear, non-linear and a generalized renormalization group (RNG) two-equation RANS turbulence models of the k-epsilon form were compared for the prediction of turbulent compressible flows in diesel engines. The object-oriented, multidimensional parallel code FRESCO, developed at the University of Wisconsin, was used to test the alternative models versus the standard k-epsilon model. Test cases featured the academic backward facing step and the impinging gas jet in a quiescent chamber. Diesel engine flows featured high-pressure spray injection in a constant volume vessel from the Engine Combustion Network (ECN), as well as intake flows in a high-swirl diesel engine. For the engine intake flows, a model of the Sandia National Laboratories 1.9L light-duty single cylinder optical engine was used.
Technical Paper

Comparison of Soot Processes Inside Turbulent Acetylene Flames under Atmospheric-Pressure Conditions

2006-04-03
2006-01-0885
Two soot-containing turbulent non-premixed flames burning gaseous acetylene in atmospheric-pressure air were investigated by conducting non-intrusive optical experiments at various flame locations. The differences in burner exit Reynolds numbers of these flames were large enough to examine the influence of flow dynamics on soot formation and evolution processes in heavily-sooting flames. By accounting for the fractal nature of aggregated primary particles (spherules), the proper interpretation of the laser scattering and extinction measurements yielded all the soot parameters of principal interest. With the separation of spherule and aggregate sizes, the axial zones of the prevailing turbulent soot mechanisms were accurately identified. With the high propensity of acetylene fuel to soot, relatively fast particle nucleation process led to high concentrations immediately above the burner exit.
Technical Paper

Comparison of Unburned Fuel and Aldehyde Emissions from a Methanol-Fueled Stratified Charge and Homogeneous Charge Engine

1986-10-01
861543
This paper presents the results of an experimental program in which a Texaco L-163S engine was fueled with methanol and operated in its traditional stratified charge mode and then modified to run as a homogeneous charge spark ignited engine. The primary data taken were the aldehyde and unburned fuel emissions (UBF). These data were taken using a continuous time-averaging sampling probe at the exhaust tank and at the exhaust port and with a rotary time-resolving sampling valve located at the exhaust port. The data are for two loads, 138.1 kPa (20 psi) and 207.1 kPa (30 psi) BMEP and three speeds, 1000, 1400 and 1800 rpm. The data indicate that for both the stratified charge and the homogeneous charge modes of operation formaldehyde was the only aldehyde detected in the exhaust and it primarily originated in the cylinder.
Technical Paper

Computational Optimization of a Split Injection System with EGR and Boost Pressure/Compression Ratio Variations in a Diesel Engine

2007-04-16
2007-01-0168
A previously developed CFD-based optimization tool is utilized to find optimal engine operating conditions with respect to fuel consumption and emissions. The optimization algorithm employed is based on the steepest descent method where an adaptive cost function is minimized along each line search using an effective backtracking strategy. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space. The application of this optimization tool is demonstrated for the Sulzer S20, a central-injection, non-road DI diesel engine. The optimization parameters are the start of injection of the two pulses of a split injection system, the duration of each pulse, the exhaust gas recirculation rate, the boost pressure and the compression ratio.
Technical Paper

Design and Construction of a High-Bandwidth Hydrostatic Dynamometer

1993-03-01
930259
A hydrostatic dynamometer capable of accurately controlling the speed and torque of an engine has been designed and constructed. The thrust of this work is not only to build a better dynamometer, it is the first step in creating a system for laboratory simulation of the actual load environment of engines and powertrains. This paper presents the design, construction, and evaluation of a hydrostatic dynamometer. The evaluation includes speed and torque limits, and bandwidth of the dynamometer. Also, the dynamometer is compared with those in common use, and the feasibility of accurately reproducing the engine or powertrain load environments are assessed. This is the first phase of a development program; future research is discussed.
Technical Paper

Design of a Free-Piston Engine-Pump

1992-09-01
921740
Off-highway mining and construction equipment typically converts all the power output of the engine to hydraulic power, with this power then used to perform the earth-moving operations, and also to propel the vehicle. This equipment presents significant opportunities for a new type of powerplant designed to deliver hydraulic power directly. An alternative to the conventional engine driven pump is a free-piston engine-pump (FPEP). The FPEP incorporates the functions of both an internal combustion engine and a hydraulic pump into a single, less-complex unit. The design presented in this paper utilizes two double-ended, reciprocating, opposed pistons, with combustion at one end of each piston and pumping at the opposite end. The opposed piston layout provides balance and also facilitates uniflow scavenging through intake and exhaust ports in the combustion section of the engine. An important feature of this FPEP design is the rebound accumulator circuit.
Technical Paper

Design of a Hydraulic Wheel Pump/Motor for a Hydrostatic Automobile

2002-03-19
2002-01-1349
Using a low-speed high-torque (LSHT) pump/motor to provide the speed range and torque for a hydrostatic automobile offers a number of advantages over using a high-speed low-torque pump/motor, combined with a gear reducer. However, there appear to be no LSHT units commercially available that have true variable displacement capability. Because of this void, a variable displacement pump/motor has been designed and built that could provide a direct drive for each wheel of a hydrostatic automobile. The unit uses some components such as the cylinder block, piston and modified rotating case from a commercially available radial piston pump/motor. Initial preliminary testing of the pump/motor indicates that it has good efficiency and performance characteristics, and, with further development should be very attractive for automotive use. This paper focuses on the design and kinematics of the device.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and DPF Regeneration Behavior Measurements for Two Different Regeneration Systems

2007-04-16
2007-01-1063
Three distinct types of diesel particulate matter (PM) are generated in selected engine operating conditions of a single-cylinder heavy-duty diesel engine. The three types of PM are trapped using typical Cordierite diesel particulate filters (DPF) with different washcoat formulations and a commercial Silicon-Carbide DPF. Two systems, an external electric furnace and an in-situ burner, were used for regeneration. Furnace regeneration experiments allow the collected PM to be classified into two categories depending on oxidation mechanism: PM that is affected by the catalyst and PM that is oxidized by a purely thermal mechanism. The two PM categories prove to contribute differently to pressure drop and transient filtration efficiency during in-situ regeneration.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process

2007-04-16
2007-01-0320
An experimental study was performed to investigate diesel particulate filter (DPF) performance during filtration with the use of real-time measurement equipment. Three operating conditions of a single-cylinder 2.3-liter D.I. heavy-duty diesel engine were selected to generate distinct types of diesel particulate matter (PM) in terms of chemical composition, concentration, and size distribution. Four substrates, with a range of geometric and physical parameters, were studied to observe the effect on filtration characteristics. Real-time filtration performance indicators such as pressure drop and filtration efficiency were investigated using real-time PM size distribution and a mass analyzer. Types of filtration efficiency included: mass-based, number-based, and fractional (based on particle diameter). In addition, time integrated measurements were taken with a Rupprecht & Patashnick Tapered Element Oscillating Microbalance (TEOM), Teflon and quartz filters.
Journal Article

Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions

2008-04-14
2008-01-0333
Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective in this respect. Not much is known, however, about their effects on other unregulated chemical species. This study utilized source dilution sampling techniques to evaluate the effects of a catalyzed diesel particulate filter on a wide spectrum of chemical emissions from a heavy-duty diesel engine. The species analyzed included both criteria and unregulated compounds such as particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), inorganic ions, trace metallic compounds, elemental and organic carbon (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and other organic compounds. Results showed a significant reduction for the emissions of PM mass, CO, HC, metals, EC, OC, and PAHs.
Technical Paper

Determination of Flame-Front Equivalence Ratio During Stratified Combustion

2003-03-03
2003-01-0069
Combustion under stratified operating conditions in a direct-injection spark-ignition engine was investigated using simultaneous planar laser-induced fluorescence imaging of the fuel distribution (via 3-pentanone doped into the fuel) and the combustion products (via OH, which occurs naturally). The simultaneous images allow direct determination of the flame front location under highly stratified conditions where the flame, or product, location is not uniquely identified by the absence of fuel. The 3-pentanone images were quantified, and an edge detection algorithm was developed and applied to the OH data to identify the flame front position. The result was the compilation of local flame-front equivalence ratio probability density functions (PDFs) for engine operating conditions at 600 and 1200 rpm and engine loads varying from equivalence ratios of 0.89 to 0.32 with an unthrottled intake. Homogeneous conditions were used to verify the integrity of the method.
X